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We have developed a very general computer code for studying 
microinstabilities in a uniform magnetized plasma. Employing a new 
algorithm to perform two-dimensional numerical integrals in the con- 
ductivity tensor, the code can handle an arbitrary distribution function 
given by either an analytical function or numerical values on a momen- 
tum space grid and solve the full dispersion relation for an arbitrary 
propagation angle in either a non-relativistic or relativistic plasma 
except for a highly relativistic plasma (energy % 1 MeV). The results for 
cyclotron-maser instability and whistler-wave instability are presented 
to illustrate the validity of the method. 0 1992Academlc Press. Inc. 

1. INTRODUCTION 

Linear microstability of a uniform magnetized plasma has 
been extensively studied both analytically and numerically 
[ 11. For an analytical model distribution such as 
Maxwellian, bi-Maxwellian, and Dory-Guest-Harris 
(DGH) distribution [a], one can reduce the conductivity 
tensor (and dispersion relation) to an analytical expression 
consisting of the modified Bessel functions and the plasma 
dispersion function [3] in non-relativistic cases. In 
relativistic cases, however, it is generally not possible to 
analytically reduce the conductivity tensor to a combina- 
tion of these and/or other known functions, and therefore it 
is necessary to perform numerical integrals in the momen- 
tum space, or make approximations to render an analytical 
evaluation tractable. Results then have a limited range of 
validity with respect to wavenumber, energy, type of 
distribution, and so forth. 

Even in a non-relativistic case, one often encounters a 
situation where it is very difficult to represent a velocity dis- 
tribution function by a combination of known functions. 
Such a situation occurred, for example, for a tandem-mirror 
plasma with electron cyclotron resonance heating (ECRH) 
[4]. Fokker-Planck studies of electrons heated by ECRH 
in a magnetic mirror showed an electron distribution 
with extended tail and a loss cone which may only be 

+ Deceased. 

approximated by a combination 

Plasma 

of many functions [S]. 
This usually is done by a trial and error method and often 
results in a poor fit with part of the velocity space having 
negative values [6]. Not only in mirror machines but also 
in tokamaks and other devices there exist non-Maxwellian 
plasmas due to auxiliary heating such as ECRH, ion- 
cyclotron heating, and neutral-beam heating. In addition, in 
plasma heating by use of a free-electron-laser on the MTX 
device at LLNL a highly non-Maxwellian distribution 
with a loss cone is expected to be generated because 
of a high-power, short-pulse electric field of several 
hundred kV/cm [7]. 

There have been only a few computer codes developed so 
far for studying the dispersion characteristics, absorption, 
and emission in a relativistic non-Maxwellian plasma. 
(There are numerous works published on the propagation 
and absorption in a relativistic Maxwellian plasma, 
however. See, for example, Ref. [S].) Weiss [9] presented 
an elegant and general formulation, that is applicable to 
both non-relativistic and relativistic plasmas with an 
arbitrary distribution, and reported results for an isotropic 
distribution. Following Weiss’ method, Tamor [lo] 
developed a code for an arbitrary distribution function in 
the energy range of 50-500 keV. He presented the results for 
a loss-cone distribution and a bi-Maxwellian distribution. 
Yoon and Chang [ 111 derived an exact dielectric tensor for 
a relativistic distribution with loss cone and parallel drift 
and considered a weakly relativistic limit. 

Neither of the works mentioned above, however, treats a 
truly arbitrary distribution function in a sense that they still 
have to employ a model distribution represented by a com- 
bination of Maxwellian, bi-Maxwellian, DGH distribution, 
and/or a known analytical function. As described earlier it 
is often difficult to Iit an actual distribution observed in an 
experiment or obtained from another computer code. In 
addition they restricted themselves to real frequencies, while 
we retain complex frequencies so that we can treat absolute 
instability. One can, of course, employ Weiss’ method for 
our purpose, but then one has to deal with Bessel functions 
of complex order. 
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The purpose of our article is twofold. We first present a 
general method of evaluating the conductivity tensor for nJeJ?sj~~ l[Z,(n.)-z;(A)] 

either non-relativistic or relativistic, arbitrary distributions. 
OV = mj ,+ cI,,i , 

Second, we show how one can handle numerical distribu- 
tion functions defined on a velocity or momentum grid. The 

x[(lLJ)~-(~+y+%)z(~i)] 

method, of course, works well with distributions given by 
any analytical functions. 

The general dispersion relation for linear waves in 
a uniform, infinite plasma in a uniform magnetic field, 
B,=B,i, is [12] 

(1) 1 
where k = k, i + k,, i, CLI is the complex frequency, c is the O~x = - ‘%J 
speed of light, I is the unit dyadic, and u is the conductivity 2 - i 

tensor. The conductivity tensor is given by CJ .“.L’ = 
injej e 

mj kliC'liJ 

where standard notation is used and x[(l-%)z 

s,?U,(b,)J;(b,)~~ I -i?lJf(b,) u,, i 1 
- iJ;‘(b,) u; -s,J,(b,)J;(b,) “~uII 

-bf:., -iJ;(b,) II;, 
cTzx = cJx; 

Here, sj represents the sign of the charge of speciesj, and 
b,=k,v,lQj. 

For a bi-Maxwellian distribution of particle species j 
given by Cl +4jz(tj)19 (4) 

Fj=nj(&-- (%)‘I2 

xexp[ -:($+%)I, 

where Z,(A) is the modified Bessel function, Z is the 
plasma dispersion function, c(tj = 2T,,/mj, CC~,~ = 2T,,,/m,, 

(3) %=k:c(:,/252,‘, and ~j=(~-lQj)/kIIaIIj. 

one obtains in a non-relativistic case, 2. NUMERICAL PROCEDURE 

To simplify notation for the purpose of illustrating our 
D xx = procedure, we consider only a single species, e.g., electrons, 

in evaluating the conductivity tensor and employ the 
x [ (1 L) ktclIj (l? I :; 0 ;lQj) z(<j)] following dimensionless units: u,, = v,,/c, uL = v,/c, 

W=w/Q K,, =ck,,/Q, K, =ck,/Q, where 52 is the 
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cyclotron frequency. Note that y = (1 + u: + u:,)~“. The 
conductivity tensor, u, then becomes 

XC 
M 

, YW-I--,,u,, 

+ 26 
ss > 

, (5) 

where 

-is (suI/KL) IJ,J; 

[ 

-(iqlK,) 1J: 
M= -/ 

M,:’ 
-iu: J;’ 1 -su,u,,J,J; 

- M,,; -iUf, J: 

The second integral in Eq. (5) is trivial. For the first integral, 
the resonance term can be written as 

Y W+ l+K,,u,, 
&-K,,u,,=(W’-K;,)(u+-up) 

1 1 
X ~-~ (6) 

U II-u+ uII-” 

where u* are the resonant velocities, i.e., the roots of the 
quadratic equation, 

(YW)~-U+K,,~,,)*=O, (7) 

and given by 

u+ = w2yK;, W,,f w 

x [I’+ (K;, - W2)(1 + u:)]“‘}. (8) 

The integrals needed to evaluate all the elements of the 
conductivity tensor, Eq. (2) can now be cast into the form, 
except for one term in the zz-element, 

x H(u,,, 2~~) + i7c[o,f H(u+, ~4~) -a; H(u-, ul)] 
1 

, 

(9) 

where a(~,) involves Bessel functions, the terms with 0’ 
represent analytic continuation for Im( W) 6 0, and 

x (yW+ I+ K,,u,,) (r=O, 1, or 2). 

We should note that the parallel resonance velocities given 
above may contain a false root because uf are the roots of 
Eq.(7)ratherthanyW-I-K,,u,,=O. 

The values of c$, which depend on uL, are obtained 
as follows. For Im( W) > 0, i.e., in the upper half of the 
complex W-plane, the u,,-integration in Eq. (9) 
l”“m du,, Wu,,, u,)/(u,, -u’), is to be performed along the 
real axis, and therefore CJ,’ = 0. For Im( W) < 0, however, 
the contour of integration needs to be deformed if uf 
crosses the real axis of the u,,-plane as Im( W) is varied from 
a positive to a negative value. Since we are concerned with 
cases with real K,, and uL, the resonance condition 
y W - I - K,, u,, = 0 says that if u * is real then W is also real. 
It then follows that if W is not real then u * is not real either. 
Therefore u* does not cross the real axis of the u,,-plane 
unless W crosses the real axis of the W-plane. As W crosses 
the real axis, we need to determine in which half of the 
complex u, ,-plane u * is located. Assuming 1 Wil = 
IIm( W)l 6 I Wrl = IRe( W)l and defining 

D-12+(K;,- W;)(l+u:), 

we find from Eq. (8), 

(I-‘W,, for D>O 

where 

-K:,U+u:) 1 24, Wr 
- w2-K2 . i- II > 

When D > 0, the sign of r *, then, determines whether u: 
lies in the upper or lower half-plane for Im( W) > 0. There- 
fore, if Im(u * )r * > 0 for Im( W) < 0, then u * is located in 
the same half-plane as u2 is in, and if Im( u * )r * < 0 for 
Im( W) < 0 then uf is located in the other half-plane than 
u$ is. For Im( W) = 0, we have Im(u*) = 0, i.e., uf is on the 
real axis. 
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So, we obtain the following rule: 

(a) For Im( W) < 0, 

if Im(u’)T’ >O, then c+ =0 
if Im(u’)f * ~0, then g’ =2 sign(r’) 

(b) For Im(lV)=O, o’= 1 sign(r’) 

where 

i 

1, Im(u*)>O 
c’ = 0, =o 

-1, < 0. 

When D < 0, there occurs no crossing of the real axis as W 
crosses the real axis. So, we have 0’ = 0 in this case. 

Here, we have chosen the parallel and perpendicular 
momentum (u,, , uL) as the independent variables. One can, 
of course, choose a different set of variables such as (y, u,,) 
or (E, u,,), where E is energy. We chose uI as one of the 
variables because it enters directly into the argument of 
Bessel functions (except for a multiplication by K, ) and 
therefore the values of Bessel functions can be stored for a 
set of uI, independent of the other variable. It seems then 
natural to choose u,, as the other variable because it is 

The u,,-integrals in Eq. (11) now seem straightforward. 
However, care must be taken in evaluating them because 
the integrand can be a slowly-decaying function as 
u,, -+ *co. This is brought about by the subtraction of 
H(u’, uL) in the numerator. Therefore the integration limit 
of u,, often needs to go much beyond the region where the 
distribution function has a significant value. To deal with 
this we divide the u,,-integral as 

physically intuitive when approaching the non-relativistic 
limit. 

In performing numerical integrals expressed in Eq. (9) 

=(~~~+~U.,.+j.:)du,,H(ui’u:,~~~u~~u,), 

one can immediately see the difficulty associated with the 
resonance behavior of the integrand with respect to u,, . To 

where u, sets the size of the momentum space beyond which 

avoid inaccuracy we subtract and add a term proportional 
there is no significant amount of particles. The first and the 

to H(u’, uI) as follows: 
last part of the right-hand side can be combined as follows: 

The integrand of the first term on the right-hand side then 
varies slowly and smoothly as u,, + ui, and the integral in 

So, we obtain 

the second term can be evaluated as 

kc, Im(u’)>O 

s 

a, 4 -= 
-m u,, -u* 

0, =o 
- in, < 0. 

Equation (9) can now be written as 
(12) 

s= 1 
s 

m du a(u,) 
W*-K;, 0 Iu+-u- O” 4, 

Equation (11) together with Eq. (12), can now be evaluated 
-a accurately. Note that the In (logarithmic) function is a com- 

x H(u,,, u,)-H(u+, ~1) 

[ 

Wu,,, u,)-H(u-, u,) 1 
plex function. As long as the integrand varies smoothly and 
slowly as a function of u,, and u,, we can use an efficient 

U II--u+ 
u,, -u- method such as the Gauss quadrature method. 

+ in[(a,’ + 0,‘) H(u+, uI) Employing the Gauss quadrature method in both direc- 
tions, we can write a highly vectorized code. It takes about 

-(a,- +a;)H(u-, ~111 (11) 10 ms on the Cray-2 to evaluate the conductivity tensor for 
each cyclotron harmonic with 128 x 64 quadrature points. 
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In a non-relativistic case the evaluation of the integral is 
simpler because there is only one parallel resonant velocity 
and it is independent of uI. In this case the two-dimensional 
integral takes the form 

F(x,y)= i i cij(x;+T”:,)i-’ 
!=I j=l 

x ( yJy+;?J- ’ (14) 

s,, = j= du, fqUI) 
-x { 

y for a grid cell defined by x, d x 6 x1+, and y, d y d yJ+ if 
-no where x and y correspond to u,, and u,, respectively, and 

the c’s are spline coefficients. 
(13) To approximate the analytic continuation of F into the 

complex u,, plane we replace x in Eq. ( 14) by a complex 
value. 

where u” = ( W - 1 )/K,, and If the data values for the distribution are noisy, we first 

(Y = 0, 1, or 2). This integral can be evaluated in exactly the 
same manner as in relativistic cases. Furthermore, the value 
of oU is obtained in the same manner as in relativistic cases: 
0,=2 sign(K,,) for Im( W) ~0, and err= 1 sign(K,,) for 
Im( W) = 0. 

To solve the dispersion relation, Eq. (1 ), we employ a 
NAG library routine, COSNBF, which obtains the Jacobian 
numerically [ 131. Given a good initial guess, the code finds 
a root in about 10 iterations. 

3. SPLINE FIT OF A DISTRIBUTION 

The numerical algorithm described in the previous 
section should work well as long as the distribution is 
smooth and there are an adequate number of quadrature 
points. When a distribution function cannot be easily 
approximated by a combination of analytic functions as 
described earlier, we employ a spline lit to the function given 
on a numerical grid, e.g., the (u,, , uI) rectangular grid. We 
represent the distribution by cubic splines as 

6 

0 

smooth them by a digital filtering technique [ 141. We have 
found a binomial filter given by 

F ;“J”=~CF,-,.,~,+2F,,,-,+F,,,,,- 1 

+ 2F,- I,J + 4Fw + 2F,, 1,J 

+F,~,,,+,+~F,,,+,+F,+I,,+,I 
quite satisfactory. 

4. EXAMPLE RESULTS 

4.1. Cyclotron-Maser Instability 

Cyclotron-maser instability is an electromagnetic 
instability with an X-mode polarization and predominantly 
perpendicular propagation to the external magnetic field 
[ 151. This instability arises only in a relativistic treatment 
and requires a loss cone distribution. 

We employ the DGH-type distribution function, 

F(u,,> UL) = &(2)2mexp[ -uiaTu’], (15) 

to test the code against a published result. In Fig. 1 we 
present a comparison with the result of Pritchett [ 161 for 

0.85 0.90 0.95 1.00 1.05 0.85 0.90 0.95 1.00 1.05 

kc/Q, kc/CL, 

FIG. 1. (a) Growth rate vs. wavenumber for cyclotron-maser instability from the code. (b) The results of Pritchett (Fig. 8 of Ref. [16]). 
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the growth rate vs the wave number. The parameters chosen 
are: m = 2, c1= 0.1, o,/sZ, = 0.05, and propagation angle 
0 = 70”-90”. In this comparison we have used the analytical 
derivatives of the function given by Eq. (15) to calculate the 
integrand on the quadrature points. 

We find a very good agreement between the two results. 
In terms of numerical values, the growth rate, w,/Q, from 
our code is 5.93 x lop3 compared to 5.94 x lop3 and the 
frequency, 0,/Q,, is 0.9956 compared to 0.9958 at the 
wavenumber ck/Q2, = 0.966 and 19 = 90”. In this case it took 
about 0.3 s to find a root. 

In this example, the characteristic velocity of electrons, u, 
is much smaller than the velocity of light, c. Therefore, it 
may not seem to provide a valid justification of our method 
in relativistic cases. However, the condition, v/c 4 1, is not 
a suflicient condition for the validity of a non-relativistic 
calculation, as demonstrated in Ref. [15], because (u/c)’ 
must be compared to the fractional shift of the wave 
frequency away from cyclotron resonance to determine 
whether the relativistic mass shift must be included in the 
resonant denominator. Cyclotron-maser instability has 
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FIG. 2. (a) Growth rate and (b) frequency vs. wavenumber for 
whistler instability from the code. Parameters are: mpe/Qe = 8, /I1 = 0.3, 
and TI/T,,=5 and 3. 8,, [=(2Tll/m)“2] is the thermal velocity in the 
parallel direction. 

TABLE I 

Comparison of Growth Rates from Two Calculations: One by Use 
of a Numerical Distribution and the Other by Use of Eq. (4) 

4/-Q, 

5.5 
7.0 
8.5 

10 

Im w/Q, Im w/Q, 
(numerical) (Use of Eq. (4)) 

6.800 x 1om4 6.803 x 10m4 
2.909 x 10m2 2.908 x IO-’ 
4.300 x 10 -2 4.299 x 10m2 
2.828 x lo-* 2.828 x 10. ’ 

Nore. Parameters are oJsZ, = 8, b1 =0.3, and T,/T,, = 3. 

very small shifts and requires a relativistic calculation 
even at very low temperatures. In fact, cyclotron-maser 
instability does not occur at any temperature in a non- 
relativistic theory. In addition, there are no restrictions or 
assumptions implied in our method regarding the value 
of v/c. 

4.2. Whistler Instability 

We chose whistler instability as another example to test 
the code. The whistler-wave instability was shown to arise 
when the electron perpendicular temperature is larger than 
the parallel temperature [ 171. 

In this case we use a bi-Maxwellian distribution given by 
Eq. (3). The derivatives of the distribution function were 
first evaluated on a rectangular grid in velocity space and a 
cubic spline tit was obtained for each derivative as described 
in Section 3. The integrands were then evaluated on the 
quadrature points from the lit given by Eq. (14). 

In this example we have treated a non-relativistic case to 
compare the results with the roots obtained from the disper- 
sion relation employing Eq. (4) which is expressed in terms 
of the plasma dispersion function and the modified Bessel 
functions. 

The frequency and growth rate are shown in Fig. 2. These 
were obtained by our method along with the use of the 
spline lit to the distribution. The parameters chosen are: 
w,,JQ~= 8, PI = 8nnT,/B2=0.3 and T,/TIl = 3 and 5. 
These values are those used by Gladd [ 181. Our results are 
somewhat different from Giadd’s result (Fig. 2 in Ref. [ 181) 
due to his approximation, ck/o B 1. For comparison, 
Table I lists the growth rates shown in Fig. 2 and those 
obtained from the use of the analytical expression, Eq. (4), 
in the dispersion relation. We find very good agreement 
between the two results, which demonstrates the validity of 
our method. 

5. CONCLUSION 

We have presented a new numerical method for studying 
a microinstability of a uniform plasma in a magnetic field. 
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Our method is a very general one that can be applied 
to either a relativistic or non-relativistic plasma with a 
completely arbitrary distribution function. By presenting 
the results for cyclotron-maser instability and whistler 
instability we have shown that our method is a valid and 
efficient one; we have shown that the results from our code 
agree very well with the previously published results or 
analytical calculations. 

A method based on the cyclotron harmonic expansion, 
such as ours, may seem less efficient than Weiss’ method. 
However, use of a multi-processor machine alleviates the 
inefficiency because each harmonic term can be evaluated 
independently on each processor. The method should prove 
useful in many applications because one can use any 
distribution including those defined only on a numerical 
grid. One such application may be space plasmas for which 
distribution functions measured in situ are available. 

ACKNOWLEDGMENTS 

The authors wish to thank L. D. Pearlstein for his suggestions and 
interest in this work. This work was performed under the auspices of the 
U.S. Department of Energy by Lawrence Livermore National Laboratory 
under Contract W-7405-ENG-48. 

REFERENCES 

l. See, for example, T. H. Stix, The Theory of Plasma Waves 
(McGraw-Hill, New York, 1962). 

2. R. A. Dory, G. E. Guest, and E. G. Harris, Phys. Rev. Lett. 14, 131 
(1965). 

3 

4 

5 

6 

I. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

B. D. Fried and S. D. Conte, The Plasma Dispersion Function 
(Academic Press, New York, 1961). 

T. C. Simonen, S. L. Allen, J. D. Barter et al., IEEE Trans. Plasma Sci. 
16, 1 (1988). 

Y. Matsuda and T. D. Rognlien, Phys. Fluids 26, 2778 (1983). 

Y.-J. Chen, W. M. Nevins, and G. R. Smith, “High-Frequency 
Microinstabilities in Hot-Electron Plasmas,” 2nd Workshop on Hot 
Electron Ring Physics, San Diego, CA, December 1981. 

T. D. Rognlien, private communication; B. I. Cohen, R. H. Cohen, 
W. M. Nevins, T. D. Rognlien, P. T. Bonoli, and M. Porkolab, Theory 
of Fusion Plasmas, (edited by J. Vaclavik, F. Troyon, and E. Sindoni 
(Chexbres, Switzerland, Oct. 1988.)) 

B. A. Trubnikov, in Plasma Physics and the Problem of Controlled 
Thermonuclear Reactions, Vol. III, edited by M. A. Leontovich 
(Pergamon, New York, 1959); I. P. Shkarofsky, Phys. Fluids 9, 561 
(1966); D. B. Batchelor, R. C. Goldlinger, and H. Weitzner, Phys. 
Fluids 27, 2835 (1984). 

I. Weiss, J. Comput. Phys. 61, 403 (1985). 

S. Tamor, Science Applications International Corp. Report SAIC- 
86/3081-APPAT-77, 1986 (unpublished). 

P. H. Yoon and T. Chang, J. Plasma Phys. 42, 183 (1989). 

See, for example, D. E. Baldwin, I. B. Bernstein, and M. P. H. Weenink, 
Adv. Plasma Phys. 3, 1 (1969). 

Numerical Algorithms Group, Inc., 1131 Warren Avenue, Downers 
Grove, IL 60515. 

R. W. Hamming, Digital Filters (Prentice-Hall, Englewood Cliffs, NJ, 
1977). 

See, for example, Y. Y. Lau and K. R. Chu, Phys. Rev. Lett. 50, 243 
(1983); K. R. Chu and J. Hirshlield, Phys. Fluids 21, 461 (1978); 
C. S. Wu and L. C. Lee, Astrophys. J. 230, 621 (1979). 

P. L. Pritchett, J. Geophys. Res. 89, 8957 (1984). 

R. N. Sudan, Phys. Fluids 6, 57 (1963). 

N. T. Gladd, Phys. Fluids 26, 974 (1983). 


